The following is an incomplete paragraph proving that the opposite angles of parallelogram ABCD are congruent: According to the given information,...

Answer download
More Details:

The following is an incomplete paragraph proving that the opposite angles of parallelogram ABCD are congruent:



According to the given information,  and . Using a straightedge, extend segment AB and place point P above point B. By the same reasoning, extend segment AD and place point T to the left of point A. Angles BCD and PBC are congruent by the Alternate Interior Angles Theorem. Angles PBC and BAD are congruent by the Corresponding Angles Theorem. By the __________ Property of Equality, angles BCD and BAD are congruent. Angles ABC and BAT are congruent by the Alternate Interior Theorem. Angles BAT and CDA are congruent by the Corresponding Angles Theorem. By the __________ Property of Equality, ∠ABC is congruent to ∠CDA. Consequently, opposite angles of parallelogram ABCD are congruent.

What properties accurately complete the proof?

  1. Addition
  2. Transitive
  1. Reflexive
  2. Reflexive
  1. Substitution
  2. Reflexive
  1. Transitive
  2. Transitive

 


Solution details:
STATUS
Answered
QUALITY
Approved
ANSWER RATING

This question was answered on: Dec 18, 2020

PRICE: $15

Solution~00031148233801.zip (25.37 KB)

Buy this answer for only: $15

This attachment is locked

We have a ready expert answer for this paper which you can use for in-depth understanding, research editing or paraphrasing. You can buy it or order for a fresh, original and plagiarism-free solution (Deadline assured. Flexible pricing. TurnItIn Report provided)

Pay using PayPal (No PayPal account Required) or your credit card . All your purchases are securely protected by .
SiteLock

About this Question

STATUS

Answered

QUALITY

Approved

DATE ANSWERED

Dec 18, 2020

EXPERT

Tutor

ANSWER RATING

GET INSTANT HELP

We have top-notch tutors who can do your essay/homework for you at a reasonable cost and then you can simply use that essay as a template to build your own arguments.

You can also use these solutions:

  • As a reference for in-depth understanding of the subject.
  • As a source of ideas / reasoning for your own research (if properly referenced)
  • For editing and paraphrasing (check your institution's definition of plagiarism and recommended paraphrase).
This we believe is a better way of understanding a problem and makes use of the efficiency of time of the student.

Order-Now